
Mastering React with TypeScript
A Comprehensive Guide to Setting Up and Utilizing TypeScript in Your React Projects

Setting Up a React Project with
TypeScript
TypeScript enhances the development experience in React by adding static typing, which helps
catch errors early and improves code maintainability. In this tutorial, we’ll guide you through
setting up a React project with TypeScript and understanding its fundamental concepts.

Prerequisites

Before starting, ensure that you have the following installed:

Node.js (LTS recommended)
npm or yarn

You can verify your installations by running:

node -v
npm -v

Creating a React Project with TypeScript

To set up a new React project with TypeScript, use the following command:

npx create-react-app my-app --template typescript

Alternatively, if you are using yarn:

yarn create react-app my-app --template typescript

This will generate a new React project with TypeScript pre-configured.

Project Structure

Once the setup is complete, navigate into your project directory:

cd my-app

Your project structure should look like this:

my-app/
├── src/
│ ├── App.tsx
│ ├── index.tsx
│ ├── react-app-env.d.ts
│ ├── ...
├── tsconfig.json
├── package.json
└── ...

Configuring TypeScript in React

The tsconfig.json file defines the TypeScript configuration. Here’s a basic setup:

{
 "compilerOptions": {
 "target": "ES6",
 "module": "ESNext",
 "jsx": "react-jsx",
 "strict": true,
 "esModuleInterop": true,
 "skipLibCheck": true,
 "forceConsistentCasingInFileNames": true
 }
}

These settings ensure that TypeScript enforces strict type checking and optimizes the
development experience.

Understanding TypeScript Basics in React

Now that our project is set up, let’s explore the basics of using TypeScript in React.

Typing Functional Components

A functional component in TypeScript can be typed using React.FC:

import React from 'react';

type Props = {
 name: string;

};

const Greeting: React.FC<Props> = ({ name }) => {
 return <h1>Hello, {name}!</h1>;
};

export default Greeting;

Here, Props defines the expected properties, ensuring name must be a string.

Using TypeScript with useState

The useState hook can be typed to ensure type safety:

import React, { useState } from 'react';

const Counter: React.FC = () => {
 const [count, setCount] = useState<number>(0);

 return (
 <div>
 <p>Count: {count}</p>
 <button onClick={() => setCount(count + 1)}>Increase</button>
 </div>
);
};

export default Counter;

The useState<number>(0) ensures that count is always a number.

Typing Events in React

Handling events with TypeScript requires specifying the event type:

const handleClick = (event: React.MouseEvent<HTMLButtonElement>) => {
 console.log('Button clicked!', event);
};

This ensures TypeScript understands the event type and prevents potential errors.

Defining Custom Types and Interfaces

You can define interfaces or types to structure props and state:

type User = {
 id: number;
 name: string;
};

const UserProfile: React.FC<{ user: User }> = ({ user }) => {
 return <p>{user.name}</p>;
};

This makes the code more maintainable and ensures type safety.

Using Props and State with TypeScript

TypeScript enhances the React development experience by providing type safety, reducing bugs,
and improving code maintainability. In this guide, we will explore how to use props and state
effectively in React with TypeScript.

Understanding Props in TypeScript

Props (short for properties) allow you to pass data between React components. In TypeScript, we
define prop types using interfaces or type aliases.

Example: Defining and Using Props

import React from 'react';

type GreetingProps = {
 name: string;
 age?: number; // Optional prop
};

const Greeting: React.FC<GreetingProps> = ({ name, age }) => {
 return (
 <div>
 <h1>Hello, {name}!</h1>
 {age && <p>Age: {age}</p>}
 </div>
);
};

export default Greeting;

Here, GreetingProps defines the expected props, ensuring name is a required string while age is
an optional number.

Passing Props to a Component

<Greeting name="Alice" age={25} />
<Greeting name="Bob" />

Since age is optional, the second usage is valid without an error.

Using State with TypeScript

React’s useState hook allows components to manage state. With TypeScript, we specify the state
type explicitly.

Example: Defining State with useState

import React, { useState } from 'react';

const Counter: React.FC = () => {
 const [count, setCount] = useState<number>(0);

 return (
 <div>
 <p>Count: {count}</p>
 <button onClick={() => setCount(count + 1)}>Increment</button>
 </div>
);
};

export default Counter;

Here, useState<number>(0) ensures that count is always a number.

Typing Components and Hooks in React

TypeScript provides strong typing for React components and hooks, improving reliability and
readability.

Typing Functional Components

React functional components can be typed using React.FC<T> where T represents the props.

import React from 'react';

type UserProps = {
 id: number;
 name: string;
};

const UserCard: React.FC<UserProps> = ({ id, name }) => {
 return (
 <div>
 <h2>{name}</h2>
 <p>ID: {id}</p>
 </div>
);
};

export default UserCard;

Typing Custom Hooks

When creating custom hooks, we can define explicit return types to ensure type safety.

Example: Custom Hook for Counter

import { useState } from 'react';

type UseCounterReturn = {
 count: number;
 increment: () => void;
};

const useCounter = (): UseCounterReturn => {
 const [count, setCount] = useState<number>(0);

 const increment = () => setCount(prev => prev + 1);

 return { count, increment };
};

export default useCounter;

The UseCounterReturn type ensures useCounter always returns a count and an increment
function.

Handling Events and Forms with TypeScript

TypeScript provides strong type safety in React applications, helping developers avoid runtime
errors and improve maintainability. When working with events and forms in React, properly
typing handlers and form elements ensures reliability and clarity.

Typing Event Handlers

1.

React uses synthetic events that wrap the browser's native events. To type event handlers
correctly, use specific event types provided by React.

Example: Handling Click Events

const handleClick = (event: React.MouseEvent<HTMLButtonElement>) => {
 console.log("Button clicked", event);
};

Example: Handling Input Change Events

const handleChange = (event: React.ChangeEvent<HTMLInputElement>) => {
 console.log("Input changed to:", event.target.value);
};

Handling Forms with TypeScript

Forms involve multiple elements like inputs, text areas, and buttons. Ensuring correct types
improves predictability and debugging.

Example: Controlled Input Form

import React, { useState } from 'react';

const FormExample: React.FC = () => {
 const [inputValue, setInputValue] = useState<string>("");

 const handleSubmit = (event: React.FormEvent) => {
 event.preventDefault();
 console.log("Form submitted with value:", inputValue);
 };

 return (
 <form onSubmit={handleSubmit}>
 <input type="text" value={inputValue} onChange={(e) => setInputValue(e.target.value)} />
 <button type="submit">Submit</button>
 </form>
);
};

export default FormExample;

Best Practices for Using TypeScript in React

Enable Strict Mode
Enable strict mode in tsconfig.json for better type checking:

2.

3.

4.

5.

6.

7.

8.

{
 "compilerOptions": {
 "strict": true
 }
}
Use Specific Types Instead of any
Avoid using any to maintain type safety. Use specific types like string, number, boolean, or
React event types.
Define Reusable Types
Use TypeScript interfaces or type aliases to define prop types and state objects.
type User = {
 name: string;
 age: number;
};
Utilize Utility Types
TypeScript provides utility types such as Partial<T>, Readonly<T>, and Pick<T, K> to enhance
type flexibility.
Type Hooks Explicitly
Ensure hooks like useState, useRef, and useContext have proper type annotations.
const [count, setCount] = useState<number>(0);

Handling events and forms with TypeScript improves React applications by making them more
robust and maintainable. Following best practices, such as explicit typing, reusable interfaces,
and strict mode, enhances code reliability and readability.

