
TypeScript 
Classes: A 
Comprehensive 
Guide
This presentation will explore the fundamentals of TypeScript classes, covering 

their structure, key features, and best practices for writing clean and scalable 

code.

por Edson Camacho

https://gamma.app/?utm_source=made-with-gamma


Understanding the Basics of a 
TypeScript Class

Declaring a 
Class

Use the class keyword 

followed by the class name. 

For example, class Person { ... 

}

Properties

Define characteristics of the 

object. For example, name: 

string; age: number;

Constructor

A special method used to 

initialize object properties. 

For example, 

constructor(name: string, 

age: number) { ... }

Methods

Define behaviors for the 

class. For example, greet(): 

string { ... }

https://gamma.app/?utm_source=made-with-gamma


Key Features and Benefits

1 Strong Typing

Enforces data types at compile-

time, reducing runtime errors.

2 Access 
Modifiers

Control visibility and enforce 

encapsulation (public, private, 

protected).

3 Inheritance

Create new classes based on 

existing ones, inheriting properties 

and methods.

4 Getters and Setters

Allow controlled access to private properties.

5 Abstract Classes

Define a base structure for other classes but cannot be 

instantiated directly.

https://gamma.app/?utm_source=made-with-gamma


Creating and Extending a 
TypeScript Class

Creating a Class

Define a class using the class keyword, properties, a constructor, 

and methods.

Extending a Class

Use the extends keyword to inherit properties and methods from 

a parent class.

https://gamma.app/?utm_source=made-with-gamma


Best Practices for Writing 
Clean and Scalable Classes

Use Access Modifiers

Control visibility and enforce encapsulation.

Implement Interfaces

Enforce a contract for classes, improving maintainability.

Use Readonly Properties

Prevent modification of properties after initialization.

Leverage Getters and 
Setters

Control access to properties.

Favor Composition Over 
Inheritance

Reduce complexity by using composition instead of 

inheritance when possible.

Use Abstract Classes

Define a template for subclasses.

https://gamma.app/?utm_source=made-with-gamma


Example: 
Implementing a 
Bank Account 
Class

class BankAccount {
  private balance: number;

  constructor(initialBalance: number) {
    this.balance = initialBalance;
  }

  deposit(amount: number): void {
    this.balance += amount;
  }

  withdraw(amount: number): void {
    if (this.balance >= amount) {
      this.balance -= amount;
    } else {
      console.log("Insufficient funds.");
    }
  }

  getBalance(): number {
    return this.balance;
  }
}

const account = new BankAccount(1000);
account.deposit(500);
console.log(account.getBalance()); // 1500
account.withdraw(200);
console.log(account.getBalance()); // 1300

https://gamma.app/?utm_source=made-with-gamma


Example: 
Implementing a 
Shape Hierarchy

abstract class Shape {
  abstract getArea(): number;
}

class Circle extends Shape {
  constructor(private radius: number) {
    super();
  }

  getArea(): number {
    return Math.PI * this.radius * this.radius;
  }
}

class Square extends Shape {
  constructor(private side: number) {
    super();
  }

  getArea(): number {
    return this.side * this.side;
  }
}

const myCircle = new Circle(5);
console.log(myCircle.getArea()); // 78.54

const mySquare = new Square(4);
console.log(mySquare.getArea()); // 16

https://gamma.app/?utm_source=made-with-gamma


Conclusion: 
Leveraging 
TypeScript 
Classes for 
Robust 
Applications
By understanding the fundamentals of TypeScript classes, we can write more 

organized, maintainable, and scalable code. TypeScript classes provide a 

powerful tool for building robust and efficient applications.

https://gamma.app/?utm_source=made-with-gamma

